Multiscale models and approximation algorithms for protein electrostatics

نویسندگان

  • Jaydeep P. Bardhan
  • Matthew G. Knepley
چکیده

Electrostatic forces play many important roles in molecular biology, but are hard to model due to the complicated interactions between biomolecules and the surrounding solvent, a fluid composed of water and dissolved ions. Continuum model have been surprisingly successful for simple biological questions, but fail for important problems such as understanding the effects of protein mutations. In this paper we highlight the advantages of boundaryintegral methods for these problems, and our use of boundary integrals to design and test more accurate theories. Examples include a multiscale model based on nonlocal continuum theory, and a nonlinear boundary condition that captures atomic-scale effects at biomolecular surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

Stochastic realization theory for exact and approximate multiscale models

The thesis provides a detailed analysis of the independence structure possessed by multiscale models and demonstrates that such an analysis provides important insight into the multiscale stochastic realization problem. Multiscale models constitute a broad class of probabilistic models which includes the well-known subclass of multiscale autoregressive (MAR) models. MAR models have proven useful...

متن کامل

Multiscale geometric modeling of macromolecules II: Lagrangian representation

Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics, and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as th...

متن کامل

Multiscale Modeling of Fluctuations in Stochastic Elliptic Pde Models of Nanosensors∗

In this work, the multiscale problem of modeling fluctuations in boundary layers in stochastic elliptic partial differential equations is solved by homogenization. A homogenized equation for the covariance of the solution of stochastic elliptic PDEs is derived. In addition to the homogenized equation, a rate for the covariance and variance as the cell size tends to zero is given. For the homoge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015